Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

4,5-Diazafluoren-9-ol

Chao Tu, Dun-Ru Zhu, Yan Xu, Xiao-Kang Ke and Zijian Guo*

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
Correspondence e-mail: zguo@netra.nju.edu.cn
Received 1 June 2000
Accepted 13 July 2000
The title compound, $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$, has two crystallographically independent molecules in the crystal. Each molecule is basically planar except for the O atom. The two N atoms in the molecule show different behaviour as hydrogen-bonding acceptors. One of them is involved in intermolecular O $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds which stabilize the crystal packing.

Comment

4,5-Diazafluoren-9-ol, (I), has been synthesized and characterized over the past three decades (Dickeson \& Summers, 1970; Gillard \& Hill, 1974; Newkome \& Roper, 1979). Recently, it has been of interest that some derivatives of (I) are potential drugs for the improvement of cognitive performance in patients with Alzheimer's-type dementia (Wong et al., 1996) and are also potential anticancer agents (Lattmann et al., 1999). Metal modification (metal binding) can have a direct or indirect influence on the activity and metabolism of organic drugs: some metal-organic drug complexes have improved biological activities over the parent organic compounds (Guo \& Sadler, 1999a). As part of our research into the design of novel platinum-based anticancer agents and other metal-based drugs (Guo \& Sadler, 1999b), and as a continuation of structural investigations of 4,5-diazafluoren-9one derivatives (Fun et al., 1995; Shanmuga Sundara Raj et al., 1999), we have synthesized compound (I) and report its structure here.

(I)

The X-ray analysis of (I) indicated it to have crystallographically independent molecules, namely, molecules 1 and 2, which contain atoms O 1 and O 2 , respectively. Each molecule is basically planar except for the O atom, which has a maximum deviation from the fused rings of 1.073 (1) \AA for molecule 1 and 1.092 (1) \AA for molecule 2. The dihedral angle between molecules 1 and 2 is $61.0(3)^{\circ}$.

The bond lengths and angles observed in the structure of (I) are in the normal ranges and are comparable with those found in the structures of other 4,5-diazafluorene derivatives (Lu et al., 1995, 1996). We have reported previously that there is a difference in the behaviour of the two pyridyl N atoms of the diazafluorene moiety, in that one can form strong hydrogen bonds and the other cannot (Fun et al., 1995; Shanmuga Sundara Raj et al., 1999). The same phenomenon is also found in the present structure; atoms N2 of molecule 1 and N 3 of molecule 2 are involved in intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, whereas atoms N 1 and N 4 are not involved in any hydrogen-bond interaction. The different behaviour of these N atoms with respect to hydrogen bonding may be related to their environments.

Figure 1
The structure of (I) showing 30\% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity. The hydroxy group is disordered unequally over two sites.

Atom O 1 is disordered, with an occupancy of 0.866 (3) for O 1 and 0.134 (3) for $\mathrm{O} 1 A$. Only the hydrogen bond formed by the O 1 atom with the highest occupancy factor is considered here. In addition, atom O2 can form a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, whereas O 1 cannot form any $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The geometries of these interactions are listed in Table 2.

Experimental

Compound (I) was prepared by the reaction of 4,5-diazafluoren-9one with an excess of sodium borohydride in 95% ethanol for 30 min . Diffraction quality crystals of (I) were obtained by recrystallization from toluene.

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=184.19$
Monoclinic, $P 2_{1} / n$
$a=10.193$ (2) \AA
$b=14.477$ (3) \AA
$c=12.092$ (2) \AA
$\beta=96.29$ (3) ${ }^{\circ}$
$V=1773.6$ (6) \AA^{3}
$Z=8$
$D_{x}=1.380 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=2.38-10.24^{\circ}$
$\mu=0.092 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.28 \times 0.24 \times 0.22 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$2 \theta / \omega$ scans
3295 measured reflections 3109 independent reflections 1443 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$
$\theta_{\text {max }}=24.97^{\circ}$
$h=0 \rightarrow 12$
$k=0 \rightarrow 17$
$l=-14 \rightarrow 14$
3 standard reflections every 97 reflections intensity decay: 4.98%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.085$
$S=1.023$
3109 reflections
266 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.025 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.11 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

C1-N1	$1.334(2)$	$\mathrm{C} 16-\mathrm{N} 3$	$1.332(2)$
$\mathrm{C} 5-\mathrm{N} 1$	$1.344(2)$	$\mathrm{C} 17-\mathrm{N} 4$	$1.346(3)$
$\mathrm{C} 6-\mathrm{N} 2$	$1.335(2)$	$\mathrm{C} 21-\mathrm{N} 4$	$1.328(2)$
$\mathrm{C} 10-\mathrm{N} 2$	$1.345(2)$	$\mathrm{C} 22-\mathrm{O} 2$	$1.409(3)$
$\mathrm{C} 11-\mathrm{O} 1 A$	$1.410(11)$	$\mathrm{O} 1-\mathrm{H} 1 A$	$0.87(3)$
$\mathrm{C} 11-\mathrm{O} 1$	$1.417(3)$	$\mathrm{O} 2-\mathrm{H} 2 A$	$0.91(3)$
$\mathrm{O} 1 A-\mathrm{C} 11-\mathrm{O} 1$	$100.6(5)$	$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 2$	$115.3(2)$
$\mathrm{O} 1 A-\mathrm{C} 11-\mathrm{C} 7$	$116.4(5)$	$\mathrm{O} 2-\mathrm{C} 22-\mathrm{C} 15$	$114.0(2)$
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 7$	$113.7(2)$	$\mathrm{O} 2-\mathrm{C} 22-\mathrm{C} 20$	$110.9(2)$
$\mathrm{O} 1 A-\mathrm{C} 11-\mathrm{C} 2$	$109.7(5)$		

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1A $\cdots \mathrm{N}^{\mathrm{i}}$	$0.87(3)$	$2.10(3)$	$2.936(3)$	$160(2)$
O2-H2 $^{\mathrm{H}} \cdots \cdots \mathrm{N} 2^{\mathrm{ii}}$	$0.91(3)$	$1.83(3)$	$2.710(2)$	$164(2)$
C9-H9 $A \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.96	2.48	$3.292(3)$	142

Symmetry codes: (i) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$; (iii) $x, y, 1+z$.

H atoms on C atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.96 \AA$, assigned fixed isotropic displacement parameters and allowed to ride. H atoms on O atoms (except $\mathrm{O} 1 A$) were located from a difference map and were refined isotropically. Atoms O 1 and $\mathrm{O} 1 A$ are disordered and the occupancy factors are 0.866 (3) for O 1 and 0.134 (3) for O1A.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was funded by the State Key Project of Fundamental Research and by the National Natural Science Foundation of China. The authors thank Mr Wang Hua-Qing (Centre of Materials Analysis, Nanjing University) for the X-ray structure determination.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1481). Services for accessing these data are described at the back of the journal.

References

Dickeson, J. E. \& Summers, L. A. (1970). Aust. J. Chem. 23, 1023-1027.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fun, H.-K., Sivakumar, K., Zhu, D.-R. \& You, X.-Z. (1995). Acta Cryst. C51, 2076-2078.
Gillard, R. D. \& Hill, R. E. E. (1974). J. Chem. Soc. Dalton Trans. pp. 12171236.

Guo, Z. J. \& Sadler, P. J. (1999a). Angew. Chem. Int. Ed. Engl. 38, 1512-1531.
Guo, Z. J. \& Sadler, P. J. (1999b). Adv. Inorg. Chem. 49, 183-306.
Lattmann, E., Begum, A. \& Plater, M. J. (1999). Drug Des. Discovery, 16, 159201.

Lu, Z.-L., Duan, C.-Y., Tian, Y.-P., You, X.-Z., Fun, H.-K. \& Sivakumar, K. (1995). Acta Cryst. C51, 2078-2080.

Lu, Z.-L., Shan, B.-Z., Duan, C.-Y., Tian, Y.-P., You, X.-Z., Fun, H.-K. \& Sivakumar, K. (1996). Acta Cryst. C52, 1720-1722.
Newkome, G. R. \& Roper, J. M. (1979). J. Org. Chem. 44, 502-505.
Shanmuga Sundara Raj, S., Fun, H.-K., Zhu, D.-R., Jian, F.-F., Zhang, K.-L. \& You, X.-Z. (1999). Acta Cryst. C55, 1526-1528.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Wong, Y. N., Quon, C. Y., Holm, K. A., Burcham, D. L., Frey, N. L., Huang, S.-M. \& Lam, G. N. (1996). Drug Metab. Dispos. 24, 172-179.

